(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__g(X) → a__h(X)
a__c → d
a__h(d) → a__g(c)
mark(g(X)) → a__g(X)
mark(h(X)) → a__h(X)
mark(c) → a__c
mark(d) → d
a__g(X) → g(X)
a__h(X) → h(X)
a__c → c
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__g(z0) → a__h(z0)
a__g(z0) → g(z0)
a__c → d
a__c → c
a__h(d) → a__g(c)
a__h(z0) → h(z0)
mark(g(z0)) → a__g(z0)
mark(h(z0)) → a__h(z0)
mark(c) → a__c
mark(d) → d
Tuples:
A__G(z0) → c1(A__H(z0))
A__H(d) → c5(A__G(c))
MARK(g(z0)) → c7(A__G(z0))
MARK(h(z0)) → c8(A__H(z0))
MARK(c) → c9(A__C)
S tuples:
A__G(z0) → c1(A__H(z0))
A__H(d) → c5(A__G(c))
MARK(g(z0)) → c7(A__G(z0))
MARK(h(z0)) → c8(A__H(z0))
MARK(c) → c9(A__C)
K tuples:none
Defined Rule Symbols:
a__g, a__c, a__h, mark
Defined Pair Symbols:
A__G, A__H, MARK
Compound Symbols:
c1, c5, c7, c8, c9
(3) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 3 of 5 dangling nodes:
MARK(c) → c9(A__C)
MARK(h(z0)) → c8(A__H(z0))
MARK(g(z0)) → c7(A__G(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__g(z0) → a__h(z0)
a__g(z0) → g(z0)
a__c → d
a__c → c
a__h(d) → a__g(c)
a__h(z0) → h(z0)
mark(g(z0)) → a__g(z0)
mark(h(z0)) → a__h(z0)
mark(c) → a__c
mark(d) → d
Tuples:
A__G(z0) → c1(A__H(z0))
A__H(d) → c5(A__G(c))
S tuples:
A__G(z0) → c1(A__H(z0))
A__H(d) → c5(A__G(c))
K tuples:none
Defined Rule Symbols:
a__g, a__c, a__h, mark
Defined Pair Symbols:
A__G, A__H
Compound Symbols:
c1, c5
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A__G(z0) → c1(A__H(z0))
A__H(d) → c5(A__G(c))
We considered the (Usable) Rules:none
And the Tuples:
A__G(z0) → c1(A__H(z0))
A__H(d) → c5(A__G(c))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A__G(x1)) = [3] + [2]x12
POL(A__H(x1)) = [2]x12
POL(c) = 0
POL(c1(x1)) = x1
POL(c5(x1)) = x1
POL(d) = [3]
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__g(z0) → a__h(z0)
a__g(z0) → g(z0)
a__c → d
a__c → c
a__h(d) → a__g(c)
a__h(z0) → h(z0)
mark(g(z0)) → a__g(z0)
mark(h(z0)) → a__h(z0)
mark(c) → a__c
mark(d) → d
Tuples:
A__G(z0) → c1(A__H(z0))
A__H(d) → c5(A__G(c))
S tuples:none
K tuples:
A__G(z0) → c1(A__H(z0))
A__H(d) → c5(A__G(c))
Defined Rule Symbols:
a__g, a__c, a__h, mark
Defined Pair Symbols:
A__G, A__H
Compound Symbols:
c1, c5
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))